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Extensions of the Momentum Transfer Theorem*

E. Gerjuoy

University of Pittsburgh

Recently Lippmann,l in this Journal, has discussed the extensiom
of the momentum fransfer theorem®s3 to systems more complicated than
the (elastic or inelastic) collisions of electrons with atomic hydrogen,
I..ippmaxm:L also has discussed extensions of the theorem to other observables,
50 as 1o derive, e.g., an energy transfer theorem. In his discussion,
Lippmann took exception to some remarks concerning the validity of the
symbolic methods customarily employed in scattering theory. These
remarks, from a preprint version of the paper which proved the mamentum
transfer theorem for e-H collisions, were accurately quoted by Lippmann,
but do notl’appear in the actually published pa.per,3 because 1 already had
decided the remarks were not wholly defensible.,h Nevertheless there remain
some differences between Lippmann's and my views of the status of the
momentum transfer theorem and its extensions. Making these differences

explicit is the primary objective of this Letter.
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In Lippmannis derivation of the momentum transfer theorem, the
starting point is

(¢l lp, H - nplzlv(*’) (1a)
A

the "expectation value" of the commutator between the Hamiltonian H and

plz’ the momentum operator (along its incident direction) of the incident
particle, Lippmann relates (la) to the momentum transfer cross section

via symbolic methods, My starting point has been much the same as Lippmann's,

namely the identity

y - @M vy a0 (1b)
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On the other hand, I have chosen to evaluate the integrals on the left side
of (1b) in a particular representation, the coordinate representatiom,
In this representation, the terms in (1b) independent of the potential V
are related, via Green's Theorem, to a surface integral at infinity, which
then can be evaluated from the known asymptotic behavior of ‘P(+) at large -
interparticle distances,

For the case of potential scattering, the aforementioned surface
integral reduces immedia.tely2 to the physical momentum transfer cross
section, thus yielding the momentum transfer cross section theorem.

The situation is less simple in e-H collisions, however, wherein ‘P(+)
must be symmetric (singlet scattéring) or antisymmetric (triplet scattering)
under interchange of rl and r2. the coordinates respectively of the
indistinguishable "initially incident" and "initially bound" electroms.

In this event the surface integral (now over the five-dimensional boundary

of the sphere at infinity in the six-dimensional space of (rl, :‘2) reduces
YA

to the momentum transfer cross section plus terms proportional to
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f d£1¢ j('x",l)pl ¢j (&'_) integrated over all r 1% where ¢j is the eigenfunction

of atomic hydrogen in its 422 bound state, Such terms, discussed in connection

with Egs, (G-42) - (G-ikb), apparently are absent from Eq, (L=6). But,
because pz has odd parity, these terms proportional to (¢Jgpz¢d) vanish,
At least superficially, therefore, Lippmann'’s version of the momentum
£ransfer theorem for e-E collisions egrees with mine,

Next, let pi replace P, in {1e) and {1v). Then proceeding from
(1b) just as in Egs. (G=36) = (G=49), cme finds for singlet or triplet
e~-H collisions that the enmergy transfer cross section UE is given by
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where the definition of OE is
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In Egqs., (2) = (3), k, is the wave number of the incident electronj kJ

is the wave number of the outgoing electron after a collision leaving
the atom in its jth bound state; ‘I\s{, wlfzq are the wave vectors of the

outgoing electrons when ionization occurs; o is the total cross section,

~including icnization; °j is the cross section {including direct and ex-

change processes) for collisions producing outgoing eliectrons with wave

number kj; o, is the cross section for ionization; integrated over all

ion

allowed values of k ké, the sums over J include elastic scattering,

J = 0. Of course,
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where ¢ 3 is the (negative) energy of the Jth bound state.

Eq. (L=T) apparently lacks the last two terms in Eq, (2) above.
‘These terms, which correspond to the terms proportional to “J P z¢J) in
the momentum transfer theorem, now do not vanish because pi has even
parity. Thus, in the case of e-H collisions, Lippmann's result for
the energy transfer theorem disagrees (superficially, at least) with the
result of a detailed calculation in the coordinate representation,

This apparent disagreement between Lippmann‘’s and my version of
the energy transfer theorem persists even when the particles 1 and 2 are
considered distinguishable, i.e,, when Y(+) is not symmetrized, To be

specific, in this situation

O, = i 2B aﬂm’[‘q‘*’vﬁv + 2vlv-vl\r“§
21k° h2
exchp, 2. 2 = 2
--h 7 Zo =k fdfl*tj(-{l)pl*j(sl)] (5)
°3J
where 0®*® jis the exchange cross section for production of free particles
3 P

2, leaving the initially free incident particle 1 in the Jf._l_; bound state.
In Eq. (5), because the particles now are distinguishable, o is defined

not by Eq. (3) but rather by

.1 2 2 exch k2 12 . 041
= 2 E(ko - Eydoy = o700 f“i%é o = K1 )o3on(E1akp) 3 (6)

where the total ionization cross section o, satisfies
on
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Evidently Eq. (6) supposes the kinetic energies of outgoing free
particles 1 only--not of particles 2-- will be measured and compared with
the initially incident kinetic energy., Eq. (6) is not the only physically
sensible possible definition of 95 in (5), but no definition of Op will
eliminate the expectation values (¢J,p2¢J) in the energy transfer theorem
unless suck expectation values explicitly are incorporated into the definition
of an For actual e-H collisiomns, involving indistinguishable particles,
Eq. (3) provides the only physically sensible definition of L

The presence of the expectation values (¢J'p2¢d) in Eq. (5) is
understandable, Whether or not the particles are indistinguishable, i.e.,
(+)

whether or not ¥ is symmetrized, the surface integral arising from

Eq, (1b) (with pi replacing plz) represents the net flux of probability
current--weighted by pi--across the sphere at infinity in 51,52 space; the
presence of forces, contained in the first term on the right side of (5)

or (2), causes this net weighted flux to differ from zeroc. All collision
processes, including those which convert 1 from a free to a bound particle,
are included in the net probability current flux; but any physically sensible
definition of op, e.g., Egs. (6) or (3), corresponding to actually feasible
measurements, should involve the kinetic energy fluxes of free (unbound)
particles only. Consequently, only in the circumstances that particle 1

is always free, or that pi is expected to vanish whenever particle 1 is not
free, does ome expect o_ of Eq, (6) to equal exactly the force terms involving
V on the right side of (5), In fact, the extra terms in (5), proportional

to ijch. have precisely the form one expects (in terms of the cross sections)

for the rate at which the forces are causing a flow of pi from unbound to

bound states of 1.




For actual e~H collisions, where the particles are indistinguishsble,
the precise form of the extra terms involving (¢j ,p2¢J) is less readily inter-
preted physically, but it is clear that the genesis of these extra terms in (2)
is essentially the same as in (5), The preceding psragraph also clarifies the
fact that the vanishing expectation values (¢j ,pzod) appear in the derivation
of the momentum transfer theorem, and suggests that extra terms involving the
expectation values “3 ,A¢j) will have to be included in the transfer theorem
for any even parity operator A, e.g., the angular momentum transfer theorem,
Eq, (L=8). However, I have not examined the angular momentum transfer theorem,
or the transfer theorem for any other even parity operator A, in the detail
that I have examined the energy transfer theorem.

It is to be noted that the presence of extra terms involving (¢J,A¢J)
implies the transfer theorem for A--unlike the momentum transfer theorem-
has little chance of being generally useful. For instance, granting exact
knowledge of V, prediction of og from (2) or (5) requires accurate knowledge
of °j and the associated expectation values (¢J'p2¢d)° Hence use of (2)
or (5) to estimate UE generally will be no easier or more accurate than
direct employment of the corresponding defining equatioms (3) or (6).

For this reasar the energy transfer theorem and similar obvious extensioms
of the momenti.u transfer theorem were not included in my e~H collisioms
paper°3

On the other hand, it is possible to eliminate the extra terms

involving “j ,A¢J) irn special cases. One important such case is the

energy transfer theorem for Coulomb interactions, i.e, just the case for

which (2) was derived. In this case we know from the virial theorem that




.
1 =
Efgﬂs(rl)pm(r ) = e, (7)
Recalling Eqs. (3) - (4), using (7) converts Eq. (2) to
20, = i 20 drv“‘w“)viv AL \r"’] (8)
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Thus in the special case of e«H collisions there is a useful energy
transfer theorem, but (superficially at least) it differs by exactly a
factor 2 from Lippmann’s version. The result (8) suggests the energy
transfer theorem remains useful--though differing by a numerical factor
from Lippmann’s version--in the collisions of many-particle systems
interacting via Coulomb forces, e.g., to atom=atom collisions. The
same comment should hold for any collisions wherein the virial theorem
is applicable, e.g., to the collisions of many-particle systems interacting
via hamogeneous potentials of any degree n {(if any case other than the
Coulomb n = =1 actually exists),

Admittedly the coordinate representation proofse-cf the momentum

transfer theorem published previously53

and of the energy transfer theorem
outlined here-=become awkward and inelegant when extended to collisions

more complicated than e-H, By finding the route to short elegant proofs
for arbitrarily complicated colliding systems, Lippmann has made an important
contribution therefore, This Letter has indicated, however, that the
symbolic methods he employs must be made more precise before the extensions
of the momentum transfer theorem to arbitrarily complicated colliding
systems, and to other observables, can be regarded as more than "plausible".
In particular (concentrating now on the energy transfer theorem), for many-

particle systems including both distinguishable and indistinguishable

paerticles, it is at least necessary to establish: (a) the connectiom




between the right side of Eq. (L-7) and the physically semsible Opi

(b) the presence of the extra terms involving (¢3,p2¢j), which are
not obviously explicitly manifested (though very likely contained) in

Eqs. (L~7) and (1L=9).
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Regrettably, Lippmann did not check with me before publishing his
Letter.




